
Market Timing with Moving Averages: Anatomy

and Performance of Trading Rules∗

Valeriy Zakamulin†

First draft: June 2014. This revision: May 29, 2016

Abstract

The underlying concept behind the technical trading indicators based on moving aver-
ages of prices has remained unaltered for more than half of a century. The development
in this field has consisted in proposing new ad-hoc rules and using more elaborate types of
moving averages in the existing rules, without any deeper analysis of commonalities and
differences between miscellaneous choices for trading rules and moving averages. The first
contribution of this paper is to uncover the anatomy of market timing rules with moving
averages. Our analysis offers a new and very insightful reinterpretation of the existing
rules and demonstrates that the computation of every trading indicator can equivalently
be interpreted as the computation of a weighted moving average of price changes. There-
fore the performance of any moving average trading rule depends exclusively on the shape
of the weighting function for price changes. The second contribution of this paper is a
straightforward application of the useful knowledge revealed by our analysis. Specifically,
we evaluate the out-of-sample performance of 300 various shapes of the weighting function
for price changes using historical data on four financial market indices. The goal of this
exercise is to suggest answers to long-standing questions about optimal types of moving
averages and whether the best performing trading rule can beat the passive counterpart in
out-of-sample tests.

Key words: technical analysis, trading rules, market timing, moving averages, out-of-
sample testing

JEL classification: G11, G17.

∗The author is grateful to Steen Koekebakker, Pete Nikolai, and the participants of the 3rd Economics &
Finance Conference (April 2015, Rome, Italy) for their insightful comments on earlier drafts of this paper. The
usual disclaimer applies.

†a.k.a. Valeri Zakamouline, School of Business and Law, University of Agder, Service Box 422, 4604 Kris-
tiansand, Norway, Tel.: (+47) 38 14 10 39, E-mail: Valeri.Zakamouline@uia.no

1



1 Introduction

Technical analysis represents a methodology of forecasting the future price movements through

the study of past price data and uncovering some recurrent regularities, or patterns, in price

dynamics. One of the fundamental principles of technical analysis is that prices move in

trends. Analysts firmly believe that these trends can be identified in a timely manner and

used to generate profits and limit losses. Market timing is an active trading strategy that

implements this idea in practice. Specifically, this strategy is based on switching between the

market and cash depending on whether the prices trend upward or downward. A moving

average of prices is one of the oldest and most popular tools used in technical analysis for

detecting a trend. Over the past two decades, market timing with moving averages has been

the subject of substantial interest on the part of academics1 and investors alike.

However, despite a series of publications in academic journals, the market timing rules based

on moving averages have remained virtually unaltered for more than half of a century. Modern

technical analysis still remains art rather than science. The situation with market timing is as

follows. There have been proposed many technical trading rules based on moving averages of

prices calculated on a fixed size data window. The main examples are: the momentum rule,

the price-minus-moving-average rule, the change-of-direction rule, and the double-crossover

method. In addition, there are several popular types of moving averages: simple (or equally-

weighted) moving average, linearly-weighted moving average, exponentially-weighed moving

average, etc. As a result, there exists a large number of potential combinations of trading rules

with moving average weighting schemes. One of the controversies about market timing is over

which trading rule in combination with which moving average weighting scheme produces the

best performance. The situation is further complicated because in order to compute a moving

average one must define the size of the averaging window. Again, there is a big controversy

over the optimal size of this window. The development in this field has consisted in proposing

new ad-hoc rules and using more elaborate types of moving averages (for example, moving

averages of moving averages) in the existing rules without any deeper analysis of commonalities

1See, among others, Brock, Lakonishok, and LeBaron (1992), Neely, Weller, and Dittmar (1997), Brown,
Goetzmann, and Kumar (1998), Sullivan, Timmermann, and White (1999), Lo, Mamaysky, and Wang (2000),
Ready (2002), Okunev and White (2003), Ellis and Parbery (2005), Faber (2007), Marshall, Cahan, and Cahan
(2008), Fifield, Power, and Knipe (2008), Zhu and Zhou (2009), Gwilym, Clare, Seaton, and Thomas (2010),
Neuhierl and Schlusche (2011), Moskowitz, Ooi, and Pedersen (2012), Metghalchi, Marcucci, and Chang (2012),
Kilgallen (2012), Clare, Seaton, Smith, and Thomas (2013), Pätäri and Vilska (2014), and Zakamulin (2014).
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and differences between miscellaneous choices for trading rules and moving average weighting

schemes.

In this paper, we contribute to the literature in two important ways. The first contribution

of this paper is to uncover the anatomy of market timing rules with moving averages of prices.

Specifically, we present a methodology for examining how the value of a trading indicator is

computed. Then using this methodology we study the computation of trading indicators in

many market timing rules and analyze the commonalities and differences between the rules. We

reveal that despite being computed seemingly different at the first sight, all technical trading

indicators considered in this paper are computed in the same general manner. In particular,

the computation of every technical trading indicator can equivalently be interpreted as the

computation of a weighted moving average of price changes. Consequently, the only real

difference, between diverse market timing rules coupled with various types of moving averages,

lies in the shape of weighting function used to compute the moving average of price changes.

Our methodology of analyzing the computation of trading indicators for the timing rules

based on moving averages offers a broad and clear perspective on the relationship between

different rules. We show, for example, that every trading rule can also be presented as a

weighted average of the momentum rules computed using different averaging periods. Thus,

the momentum rule might be considered as an elementary trading rule on the basis of which

one can construct more elaborate rules. In addition, we establish a one-to-one equivalence

between a price-minus-moving-average rule and a corresponding moving-average-change-of-

direction rule. Overall, our analysis offers a new and very insightful re-interpretation of the

existing market timing rules.

The second contribution of this paper is a straightforward application of the useful knowl-

edge revealed by our analysis of anatomy of timing rules and is motivated as follows. In all

previous academic studies on the profitability of market timing rules (see the references in

footnote 1 above), the researchers usually selected an arbitrary and limited set of so-called

“most popular combinations” of trading rules with moving average weighting schemes. There-

fore the conclusions on the profitability of market timing rules reached in previous studies are

exclusively related to the chosen set of combinations. Put differently, these conclusions cannot

be generalized to the entire universe of all potential combinations of trading rules with moving

average weighting schemes.
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Earlier, in order to select the best combination of a trading rule with a moving average

weighting scheme, using relevant historical data a researcher had to perform the tests of all

possible combinations in order to find the one with the best performance. This is a daunting

and next to impossible task. Our analysis allows a researcher to simplify dramatically this

procedure because the performance of any moving average trading rule depends exclusively on

the shape of the weighting function for price changes. Therefore, to find the best trading rule

one needs only to test various shapes of the weighting function. In this paper we, for the first

time, evaluate the out-of-sample2 performance of 300 various shapes of the weighting function

for price changes using historical data on four financial market indices. These shapes are

chosen to represent different variations of a few most typical shapes of the weighting functions

used in market timing with moving averages. Our findings suggest answers to long-standing

questions about optimal types of moving averages and whether the best performing trading

rule can beat the passive counterpart in out-of-sample tests.

The rest of the paper is organized as follows. In the subsequent Section 2 we present the

moving averages and trading rules considered in the paper. Then in Section 3 we demonstrate

the anatomy of trading rules with different moving averages and briefly review an alternative

approach to the construction of trading indicators based on moving averages. Section 4 de-

scribes our empirical data, the set of weighting functions, the methodology for out-of-sample

testing, and the results of the tests. Finally, Section 5 concludes the paper.

2 Moving Averages and Technical Trading Rules

2.1 Moving Averages

A moving average of prices is calculated using a fixed size data “window” that is rolled through

time. The length of this window of data, also called the lookback period or averaging period, is

the time interval over which the moving average is computed. We follow the standard practice

and use prices, not adjusted for dividends, in the computation of moving averages and all

technical trading indicators. More formally, let (P1, P2, . . . , PT ) be the observations of the

2It is worth mentioning that, to the best knowledge of the author, there are only two papers to date, Sullivan
et al. (1999) and Zakamulin (2014), where the researchers implement out-of-sample tests of profitability of some
trading rules in the stock market.
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monthly3 closing prices of a stock price index. A moving average at time t is computed using

the last closing price Pt and k lagged prices Pt−j , j ∈ [1, k]. It is worth noting that the time

interval over which the moving average is computed amounts to k months and includes k + 1

monthly observations. Generally, each price observation in the rolling window of data has

its own weight in the computation of a moving average. More formally, a weighted Moving

Average at month-end t with k lagged prices (denoted by MAt(k)) is computed as

MAt(k) =
wtPt + wt−1Pt−1 + wt−2Pt−2 + . . .+ wt−kPt−k

wt + wt−1 + wt−2 + . . .+ wt−k
=

∑k
j=0wt−jPt−j∑k

j=0wt−j

, (1)

where wt−j is the weight of price Pt−j in the computation of the weighted moving average.

It is worth observing that in order to compute a moving average one has to use at least one

lagged price, this means that one should have k ≥ 1. Note that when the number of lagged

prices is zero, a moving average becomes the last closing price, that is, MAt(0) = Pt.

The most commonly used types of moving averages are: the Simple Moving Average (SMA),

the Linear (or linearly weighted) Moving Average (LMA), and the Exponential Moving Average

(EMA). A less commonly used type of moving average is the Reverse Exponential Moving

Average (REMA). These moving averages at month-end t are computed as

SMAt(k) =
1

k + 1

k∑
j=0

Pt−j , LMAt(k) =

∑k
j=0(k − j + 1)Pt−j∑k

j=0(k − j + 1)
,

EMAt(k) =

∑k
j=0 λ

jPt−j∑k
j=0 λ

j
, REMAt(k) =

∑k
j=0 λ

k−jPt−j∑k
j=0 λ

k−j
,

(2)

where 0 < λ ≤ 1 is a decay factor.

As compared with the simple moving average, either the linearly weighted moving average

or the exponentially weighted moving average puts more weight on the more recent price ob-

servations. The usual justification for the use of these types of moving averages is a widespread

belief that the most recent stock prices contain more relevant information on the future direc-

tion of the stock price than earlier stock prices. In the linearly weighted moving average the

weights decrease in arithmetic progression. In particular, in LMA(k) the latest observation

has weight k+1, the second latest k, etc. down to one. A disadvantage of the linearly weighted

3Throughout the paper, we assume that the price data comes at the monthly frequency. Yet the results
presented in the first part of the paper are valid for any data frequency.
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moving average is that the weighting scheme is too rigid. In contrast, by varying the value of

λ in the exponentially weighted moving average, one is able to adjust the weighting to give

greater or lesser weight to the most recent price. The properties of the exponential moving

average:

lim
λ→1

EMAt(k) = SMAt(k), lim
λ→0

EMAt(k) = Pt. (3)

Contrary to the normal exponential moving average that gives greater weights to the most

recent prices, the reverse exponential moving average assigns greater weights to the most oldest

prices and decreases the importance of the most recent prices. The properties of the reverse

exponential moving average:

lim
λ→1

REMAt(k) = SMAt(k), lim
λ→0

REMAt(k) = Pt−k. (4)

Instead of the regular moving averages of prices considered above, traders sometimes use

more elaborate moving averages that can be considered as “moving averages of moving aver-

ages”. Specifically, instead of using a regular moving average to smooth the price series, some

traders perform either double- or triple-smoothing of the price series. The main examples

of this type of moving averages are: Triangular Moving Average, Double Exponential Moving

Average, and Triple Exponential Moving Average (see, for example, Kirkpatrick and Dahlquist

(2010)). To shorten and streamline the presentation, we will not consider these moving aver-

ages in our paper. Yet our methodology can be applied to the analysis of the trading indicators

based on this type of moving averages in a straightforward manner.

2.2 Technical Trading Rules

Every market timing rule prescribes investing in the stocks (that is, the market) when a Buy

signal is generated and moving to cash or shorting the market when a Sell signal is generated.

In the absence of transaction costs, the time t return to a market timing strategy is given by

rt = δt|t−1rMt +
(
1− δt|t−1

)
rft, (5)

where rMt and rft are the month t returns on the stock market (including dividends) and the

risk-free asset respectively, and δt|t−1 ∈ {0, 1} is a trading signal for month t (0 means Sell and
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1 means Buy) generated at the end of month t− 1.

In each market timing rule the generation of a trading signal is a two-step process. At the

first step, one computes the value of a technical trading indicator using the last closing price

and k lagged prices

Indicator
TR(k)
t = Eq(Pt, Pt−1, . . . , Pt−k), (6)

where TR denotes the timing rule and Eq(·) is the equation that specifies how the technical

trading indicator is computed. At the second step, using a specific function one translates the

value of the technical indicator into the trading signal. In all market timing rules considered

in this paper, the Buy signal is generated when the value of a technical trading indicator is

positive. Otherwise, the Sell signal is generated. Thus, the generation of a trading signal can

be interpreted as an application of the following (mathematical) indicator function to the value

of the technical indicator

δt+1|t = 1+

(
Indicator

TR(k)
t

)
, (7)

where the indicator function 1+(·) is defined by

1+(x) =


1 (or Buy signal) if x > 0,

0 (or Sell signal) if x ≤ 0.

(8)

We start the presentation of trading rules considered in the paper with the Momentum rule

(MOM) which is the simplest and most basic market timing rule. In the Momentum rule one

compares the last closing price, Pt, with the closing price k months ago, Pt−k. In this rule a

Buy signal is generated when the last closing price is greater than the closing price k months

ago. Formally, the technical trading indicator for the Momentum rule is computed as

Indicator
MOM(k)
t = MOMt(k) = Pt − Pt−k. (9)

Then the trading signal is generated by

δ
MOM(k)
t+1|t = 1+ (MOMt(k)) . (10)

Most often, in order to generate a trading signal, a trader compares the last closing price
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with the value of a k-month moving average. In this case a Buy signal is generated when the

last closing price is above a k-month moving average. Otherwise, if the last closing price is

below a k-month moving average, a Sell signal is generated. Formally, the technical trading

indicator for the Price-Minus-Moving-Average rule (P-MA) is computed as

Indicator
P-MA(k)
t = Pt −MAt(k). (11)

Some traders argue that the price is noisy and the Price-Minus-Moving-Average rule pro-

duces many false signals (whipsaws). They suggest to address this problem by employing two

moving averages in the generation of a trading signal: one shorter average with averaging pe-

riod s and one longer average with averaging period k > s. This technique is called the Double

Crossover Method4 (DCM). In this case the technical trading indicator is computed as

Indicator
DCM(s,k)
t = MAt(s)−MAt(k). (12)

It is worth noting the obvious relationship

Indicator
DCM(0,k)
t = Indicator

P-MA(k)
t . (13)

Less often, in order to generate a trading signal, the traders compare the most recent value

of a k-month moving average with the value of a k-month moving average in the preceding

month. Intuitively, when the stock prices are trending upward (downward) the moving average

is increasing (decreasing). Consequently, in this case a Buy signal is generated when the value of

a k-month moving average has increased over a month. Otherwise, a Sell signal is generated.

Formally, the technical trading indicator for the Moving-Average-Change-of-Direction rule

(∆MA) is computed as

Indicator
∆MA(k)
t = MAt(k)−MAt−1(k). (14)

4Also known as the Moving Average Crossover (MAC).
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3 Anatomy of Trading Rules

3.1 Preliminaries

It has been known for years that there is a relationship between the Momentum rule and the

Simple-Moving-Average-Change-of-Direction rule.5 In particular, note that

SMAt(k − 1)− SMAt−1(k − 1) =
Pt − Pt−k

k
=

MOMt(k)

k
. (15)

Therefore

Indicator
∆SMA(k−1)
t ≡ Indicator

MOM(k)
t , (16)

where the symbol “≡” means equivalence. The equivalence of two technical indicators stems

from the following property: the multiplication of a technical indicator by any positive real num-

ber produces an equivalent technical indicator. This is because the trading signal is generated

depending on the sign of the technical indicator. The formal presentation of this property:

1+ (a× Indicatort(k)) = 1+ (Indicatort(k)) , (17)

where a is any positive real number. Using relation (16) as an illustrating example, observe

that if SMAt(k−1)−SMAt−1(k−1) > 0 then MOMt(k) > 0 and vice versa. In other words,

the Simple-Moving-Average-Change-of-Direction rule, ∆SMA(k− 1), generates the Buy (Sell)

trading signal when the Momentum rule, MOMt(k), generates the Buy (Sell) trading signal.

What else can we say about the relationship between different market timing rules? The

ultimate goal of this section is to answer this question and demonstrate that all market timing

rules considered in this paper are closely interconnected. In particular, we are going to show

that the computation of a technical trading indicator for every market timing rule can be

interpreted as the computation of the weighted moving average of monthly price changes over

the averaging period. We will do it sequentially for each trading rule.

5See, for example, http://en.wikipedia.org/wiki/Momentum (technical analysis).
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3.2 Momentum Rule

The computation of the technical trading indicator for the Momentum rule can equivalently

be represented by

Indicator
MOM(k)
t = MOMt(k) = Pt − Pt−k

= (Pt − Pt−1) + (Pt−1 − Pt−2) + ...+ (Pt−k+1 − Pt−k) =

k∑
i=1

∆Pt−i,
(18)

where ∆Pt−i = Pt−i+1−Pt−i denotes the monthly price change. Consequently, using property

(17), the computation of the technical indicator for the Momentum rule is equivalent to the

computation of the equally weighted moving average of the monthly price changes:

Indicator
MOM(k)
t ≡ 1

k

k∑
i=1

∆Pt−i. (19)

3.3 Price-Minus-Moving-Average Rule

First, we derive the relationship between the Price-Minus-Moving-Average rule and the Mo-

mentum rule:

Indicator
P-MA(k)
t = Pt −MAt(k) = Pt −

∑k
j=0wt−jPt−j∑k

j=0wt−j

=

∑k
j=0wt−jPt −

∑k
j=0wt−jPt−j∑k

j=0wt−j

=

∑k
j=1wt−j(Pt − Pt−j)∑k

j=0wt−j

=

∑k
j=1wt−jMOMt(j)∑k

j=0wt−j

.

(20)

Using property (17), the relation above can be conveniently re-written as

Indicator
P-MA(k)
t ≡

∑k
j=1wt−jMOMt(j)∑k

j=1wt−j

. (21)

Consequently, the computation of the technical indicator for the Price-Minus-Moving-Average

rule, Pt−MAt(k), is equivalent to the computation of the weighted moving average of technical

indicators for the Momentum rules, MOMt(j), for j ∈ [1, k]. It is worth noting that the

weighting scheme for computing the moving average of the momentum technical indicators,

MOMt(j), is the same as the weighting scheme for computing the weighted moving average
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MAt(k).

Second, we use identity (18) and rewrite the numerator in (21) as

k∑
j=1

wt−jMOMt(j) =
k∑

j=1

wt−j

j∑
i=1

∆Pt−i = wt−1∆Pt−1 + wt−2(∆Pt−1 +∆Pt−2) + . . .

+ wt−k(∆Pt−1 +∆Pt−2 + . . .+∆Pt−k) = (wt−1 + . . .+ wt−k)∆Pt−1

+ (wt−2 + . . .+ wt−k)∆Pt−2 + . . .+ wt−k∆Pt−k =

k∑
i=1

 k∑
j=i

wt−j

∆Pt−i.

(22)

The last expression tells us that the numerator in (21) is a weighted sum of the monthly

price changes over the averaging window, where the weight of ∆Pt−i equals
∑k

j=iwt−i. Thus,

another alternative expression for the computation of the technical indicator for the Price-

Minus-Moving-Average rule is given by

Indicator
P-MA(k)
t ≡

∑k
i=1

(∑k
j=iwt−j

)
∆Pt−i∑k

i=1

(∑k
j=iwt−j

) =

∑k
i=1 xt−i∆Pt−i∑k

i=1 xt−i

. (23)

where

xt−i =

k∑
j=i

wt−j (24)

is the weight of the price change ∆Pt−i. In words, the computation of the technical indicator

for the Price-Minus-Moving-Average rule is equivalent to the computation of the weighted

moving average of the monthly price changes in the averaging window.

It is important to note from equation (24) that the application of the Price-Minus-Moving-

Average rule usually leads to overweighting the most recent price changes as compared to the

original weighting scheme used to compute the moving average of prices. If the weighting

scheme in a trading rule is already designed to overweight the most recent prices, then as a

rule the trading signal is computed with a much stronger overweighting the most recent price

changes. This will be demonstrated below.

Let us now, on the basis of (23), present the alternative expressions for the computation

of Price-Minus-Moving-Average technical indicators that use the specific weighting schemes

described in the preceding section. We start with the Simple Moving Average which uses the
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equally weighted moving average of prices. In this case the weight of ∆Pt−i is given by

xt−i =

k∑
j=i

wt−j =

k∑
j=i

1 = k − i+ 1. (25)

Consequently, the equivalent representation for the computation of the technical indicator for

the Price-Minus-Simple-Moving-Average rule:

Indicator
P-SMA(k)
t ≡

∑k
i=1(k − i+ 1)∆Pt−i∑k

i=1(k − i+ 1)
=

k∆Pt−1 + (k − 1)∆Pt−2 + . . .+∆Pt−k

k + (k − 1) + . . .+ 1
. (26)

This suggests that alternatively we can interpret the computation of the technical indicator

for the Price-Minus-Simple-Moving-Average rule as the computation of the linearly weighted

moving average of monthly price changes.

We next consider the Linear Moving Average which uses the linearly weighted moving

average or prices. In this case the weight of ∆Pt−i is given by

xt−i =

k∑
j=i

wt−j =

k∑
j=i

(k − j + 1) =
(k − i+ 1)(k − i+ 2)

2
, (27)

which is the sum of the terms of arithmetic sequence from 1 to k − i + 1 with the common

difference of 1. As the result, the equivalent representation for the computation of the technical

indicator for the Price-Minus-Linear-Moving-Average rule

Indicator
P-LMA(k)
t ≡

∑k
i=1

(k−i+1)(k−i+2)
2 ∆Pt−i∑k

i=1
(k−i+1)(k−i+2)

2

. (28)

Then we consider the Exponential Moving Average which uses the exponentially weighted

moving average or prices. In this case the weight of ∆Pt−i is given by

xt−i =

k∑
j=i

wt−j =

k∑
j=i

λj =
λ

1− λ

(
λi−1 − λk

)
, (29)

which is the sum of the terms of geometric sequence from λi to λk. Consequently, the equivalent

presentation for the computation of the technical indicator for the Price-Minus-Exponential-
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Moving-Average rule

Indicator
P-EMA(k)
t ≡

∑k
i=1

(
λi−1 − λk

)
∆Pt−i∑k

i=1 (λ
i−1 − λk)

. (30)

If k is relatively large such that λk ≈ 0, then the expression for the computation of the technical

indicator for the Price-Minus-Exponential-Moving-Average rule becomes

Indicator
P-EMA(k)
t ≡

∑k
i=1 λ

i−1∆Pt−i∑k
i=1 λ

i−1
=

∆Pt−1 + λ∆Pt−2 + . . .+ λk−1∆Pt−k

1 + λ+ . . .+ λk−1
, when λk ≈ 0.

(31)

In words, the computation of the trading signal for the Price-Minus-Exponential-Moving-

Average rule, when k is rather large, is equivalent to the computation of the exponential

moving average of monthly price changes. It is worth noting that this is probably the only

trading rule where the weighting scheme for the computation of moving average of prices is

identical to the weighting scheme for the computation of moving average of price changes.

The weight of ∆Pt−i for the Reverse Exponential Moving Average is given by

xt−i =
k∑

j=i

wt−j =
k∑

j=i

λk−j =
1− λk−i+1

1− λ
, (32)

which is the sum of the terms of geometric sequence from 1 to λk−i. Consequently, the

equivalent representation for the computation of the technical indicator for the Price-Minus-

Reverse-Exponential-Moving-Average rule

Indicator
P-REMA(k)
t ≡

∑k
i=1

(
1− λk−i+1

)
∆Pt−i∑k

i=1 (1− λk−i+1)
. (33)

3.4 Moving-Average-Change-of-Direction Rule

The value of this technical trading indicator is based on the difference of two weighted moving

averages computed at times t and t− 1 respectively. We assume that the size of the averaging

window is k − 1 months, the reason for this assumption will become clear very soon. The
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straightforward computation yields

Indicator
∆MA(k − 1)
t = MAt(k − 1)−MAt−1(k − 1) =

∑k−1
i=0 wt−iPt−i∑k−1

i=0 wt−i

−
∑k−1

i=0 wt−iPt−i−1∑k−1
i=0 wt−i

=

∑k−1
i=0 wt−i (Pt−i − Pt−i−1)∑k−1

i=0 wt−i

=

∑k
i=1wt−i+1∆Pt−i∑k

i=1wt−i+1

.

(34)

Consequently, the computation of the technical indicator for the Moving-Average-Change-of-

Direction rule can be directly interpreted as the computation of the weighted moving average

of monthly price changes:

Indicator
∆MA(k − 1)
t =

∑k
i=1wt−i+1∆Pt−i∑k

i=1wt−i+1

. (35)

Note that the weighting scheme for the computation of the moving average of monthly price

changes is the same as for the computation of moving average of prices. From (35) we easily

recover the relationship for the case of the Simple Moving Average where wt−i+1 = 1 for all i

Indicator
∆SMA(k − 1)
t ≡

∑k
i=1∆Pt−i

k
≡ Indicator

MOM(k)
t , (36)

where the last equivalence follows from (19).

In the case of the Linear Moving Average, where wt−i+1 = k − i + 1, we derive a new

relationship:

Indicator
∆LMA(k − 1)
t ≡

∑k
i=1(k − i+ 1)∆Pt−i∑k

i=1(k − i+ 1)
≡ IndicatorP-SMA

t (k), (37)

where the last equivalence follows from (26). Putting it into words, the Price-Minus-Simple-

Moving-Average rule, Pt−SMAt(k), prescribes investing in the stocks (moving to cash) when

the Linear Moving Average of prices over the averaging window of k − 1 months increases

(decreases).

In the case of the Exponential Moving Average and Reverse Exponential Moving Average,
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the resulting expressions for the Change-of-Direction rules can be written as

Indicator
∆EMA(k − 1)
t =

∑k
i=1 λ

i−1∆Pt−i∑k
i=1 λ

i−1
, (38)

Indicator
∆REMA(k − 1)
t =

∑k
i=1 λ

k−i∆Pt−i∑k
i=1 λ

k−i
. (39)

Observe in particular that if k is rather large, then, using result (31), we obtain yet another

new relationship:

Indicator
P-EMA(k)
t ≡ Indicator

∆EMA(k − 1)
t , when λk ≈ 0. (40)

In words, when k is rather large, the Price-Minus-Exponential-Moving-Average rule is equiv-

alent to the Exponential-Moving-Average-Change-of-Direction rule. As it might be observed,

for the majority of weighting schemes considered in the paper, there is a one-to-one equivalence

between a Price-Minus-Moving-Average rule and a corresponding Moving-Average-Change-of-

Direction rule. Therefore, the majority of the moving-average-change-of-direction rules (and

may be all of them) can also be expressed as the moving average of Momentum rules.

Finally it is worth commenting that the traders had long ago taken notice of the fact that,

for example, very often a Buy signal is generated first by the Price-Minus-Moving-Average rule,

then with some delay a Buy signal is generated by the Moving-Average-Change-of-Direction

rule. Therefore the traders sometimes use the trading signal of the Moving-Average-Change-

of-Direction rule to “confirm” the signal of the Price-Minus-Moving-Average rule (see Murphy

(1999), Chapter 9). Our analysis provides a simple explanation for the existence of a delay

between the signals generated by these two rules. Specifically, the delay naturally occurs be-

cause the Price-Minus-Moving-Average rule overweights more heavily the most recent price

changes than the Moving-Average-Change-of-Direction rule computed using the same weight-

ing scheme. Therefore the Price-Minus-Moving-Average rule reacts more quickly to the recent

trend changes than the Moving-Average-Change-of-Direction rule.6

6Assume, for example, that the trader uses the simple moving average weighting scheme in both the rules. In
this case our result says that the Price-Minus-Simple-Moving-Average rule is equivalent to the Linear-Moving-
Average-Change-of-Direction rule. As a consequence, it is naturally to expect that the Price-Minus-Simple-
Moving-Average rule reacts more quickly to the recent trend changes than the Simple-Moving-Average-Change-
of-Direction rule.
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3.5 Double Crossover Method

The relationship between the Double Crossover Method and the Momentum rule is as follows

(here we use result (20))

Indicator
DCM(s, k)
t = MAt(s)−MAt(k) = (Pt −MAt(k))− (Pt −MAt(s))

=

∑k
j=1w

k
t−jMOMt(j)∑k
j=0w

k
t−j

−
∑s

j=1w
s
t−jMOMt(j)∑s
j=0w

s
t−j

.
(41)

Different superscripts in the weights mean that for the same subscript the weights are generally

not equal. For example, in case of either linearly weighted moving averages or reverse expo-

nential moving averages wk
t−j ̸= ws

t−j , yet for the other weighting schemes considered in this

paper wk
t−j = ws

t−j . In order to get a closer insight into the anatomy of the Double Crossover

Method, we assume that one uses the exponential weighting scheme in the computation of

moving averages (as it most often happens in practice). In this case the expression for the

value of the technical indicator in terms of monthly price changes is given by (here we use

results (22) and (29))

Indicator
DCM(s, k)
t =

∑k
j=1 λ

j
∑j

i=1∆Pt−i∑k
j=0 λ

j
−

∑s
j=1 λ

j
∑j

i=1∆Pt−i∑s
j=0 λ

j
=

∑k
i=1

(∑k
j=i λ

j
)
∆Pt−i∑k

j=1 λ
j

−

∑s
i=1

(∑s
j=i λ

j
)
∆Pt−i∑s

j=1 λ
j

=

∑k
i=1

(
λi − λk+1

)
∆Pt−i

1− λk+1
−

∑s
i=1

(
λi − λs+1

)
∆Pt−i

1− λs+1
.

(42)

If we assume in addition that both s and k are relatively large such that λs ≈ 0 and λk ≈ 0,

then we obtain

Indicator
DCM(s, k)
t ≈

k∑
i=1

λi∆Pt−i −
s∑

i=1

λi∆Pt−i =

k∑
i=s+1

λi∆Pt−i. (43)

The expression above can be conveniently re-written as

Indicator
DCM(s, k)
t ≡

∑k
i=s+1 λ

i−s−1∆Pt−i∑k
j=s+1 λ

i−s−1
when k > s, λs ≈ 0, λk ≈ 0. (44)
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In words, the computation of the trading signal for the Double Crossover Method based on

the exponentially weighted moving averages of lengths s and k > s, when both s and k are

rather large, is equivalent to the computation of the exponentially weighted moving average

of monthly price changes, ∆Pt−i, for i ∈ [s+ 1, k]. Note that the most recent s monthly price

changes completely disappear in the computation of the technical trading indicator. In other

words, in the computation of the trading indicator one disregards, or skips, the most recent

s monthly price changes. When the values of s and k are not rather large, the most recent

s monthly price changes do not disappear in the computation of the technical indicator, yet

the weights of these price changes are reduced as compared to the weight of the subsequent

(s+ 1)-th price change.

3.6 Discussion

Summing up the results presented above, all technical trading indicators considered in this

paper are computed in the same general manner. We find, for instance, that the computation

of every technical trading indicator can be interpreted as the computation of a weighted average

of the momentum rules computed using different averaging periods. Thus, the momentum rule

might be considered as an elementary trading rule on the basis of which one can construct

more elaborate rules. The most insightful conclusion emerging from our analysis is that the

computation of every technical trading indicator, based on moving averages of prices, can also

be interpreted as the computation of the weighted moving average of price changes. More

formally, our analysis shows that the value of every trading indicator can alternatively be

computed using the following general formula

Indicator
TR(k)
t ≡

∑k
i=1 xt−i∆Pt−i∑k

i=1 xt−i

, (45)

where xt−i is the weight of the price change ∆Pt−i.

Our main conclusion is that, despite being computed seemingly different at the first sight,

the only real difference between miscellaneous rules lies in the weighting scheme used to com-

pute the moving average of price changes. Figure 1 illustrates a few distinctive weighting

schemes for the computation of technical trading indicators based on moving averages. In par-

ticular, this figure illustrates the weighting schemes for the Momentum rule, the Price-Minus-
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Reverse-Exponential-Moving-Average rule (with λ = 0.8), the Price-Minus-Simple-Moving-

Average rule, the Price-Minus-Linear-Moving-Average rule, and the Double Crossover Method

(based on using two exponential moving averages with λ = 0.8). For all technical indicators

we use k = 10 which means that to compute the value of a technical indicator we use the most

recent price change, ∆Pt−1, denoted as Lag0, and 9 preceding lagged price changes up to lag

∆Pt−10, denoted as Lag9. In addition, in the computation of the technical indicator for the

Double Crossover Method we use s = 3.

MOM P−REMA P−SMA P−LMA DCM

Lag0
Lag1
Lag2
Lag3
Lag4
Lag5
Lag6
Lag7
Lag8
Lag9

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

Figure 1: Weights of monthly price changes used for the computations of the technical trading in-

dicators with k = 10. MOM denotes the Momentum rule. P-REMA denotes the Price-Minus-

Reverse-Exponential-Moving-Average rule (with λ = 0.8). P-SMA denotes the Price-Minus-Simple-

Moving-Average rule. P-LMA denotes the Price-Minus-Linear-Moving-Average rule. DCM denotes

the Double Crossover Method (based on using two exponential moving averages with λ = 0.8 and

s = 3). Lag(i − 1) denotes the weight of the lag ∆Pt−i, where Lag0 denotes the most recent price

change ∆Pt−1 and Lag9 denotes the most oldest price change ∆Pt−10.

Apparently, the Momentum rule assigns equal weights to all monthly price changes in the

averaging window. The next three rules overweight the most recent price changes. They are

arranged according to increasing degree of overweighting. Whereas the Price-Minus-Simple-

Moving-Average rule employs the linear weighting scheme, the degree of overweighting in the

Price-Minus-Reverse-Exponential-Moving-Average rule can be gradually varied from the equal
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weighting scheme (when λ = 0) to the linear weighting scheme (when λ = 1), see property (4).

Formally this can be expressed by

lim
λ→0

Indicator
P-REMA(k)
t = Indicator

MOM(k)
t , lim

λ→1
Indicator

P-REMA(k)
t = Indicator

P-SMA(k)
t .

(46)

Comparing to the Price-Minus-Simple-Moving-Average rule, a higher degree of overweight-

ing can be attained by using the Exponential-Moving-Average-Change-of-Direction rule. The

degree of overweighting in this rule can be gradually varied from the linear weighting scheme

(when λ = 1) to the very extreme overweighting where only the most recent price change has

a non-zero weight (when λ = 0), see property (3). Formally this can be expressed by

lim
λ→1

Indicator
∆EMA(k)
t = Indicator

MOM(k)
t , lim

λ→0
Indicator

∆EMA(k)
t = ∆Pt−1. (47)

When λ ≈ 0.82, the degree of overweighting the most recent price changes in the Exponential-

Moving-Average-Change-of-Direction rule is virtually the same as in the Price-Minus-Linear-

Moving-Average rule. Therefore, we demonstrate only the weighting scheme in the Price-

Minus-Linear-Moving-Average rule.

In contrast to the previous rules, the weighting scheme in the Double Crossover Method

underweights both the most recent and the most old price changes. In this weighting scheme

the price change ∆Pt−s−1 = ∆Pt−4 has the largest weight in the computation of moving

average.

Our alternative representation of the computation of technical trading indicators by means

of the moving average of price changes, together with the graphical visualization of the weight-

ing schemes for different rules presented in Figure 1, reveals a couple of paradoxes. The first

paradox consists in the following. Many traders argue that the most recent stock prices contain

more relevant information on the future direction of the stock price than earlier stock prices.

Therefore, one should better use the LMA(k) instead of the SMA(k) in the computation of

trading signals. Yet in terms of the monthly price changes the application of the Price-Minus-

Simple-Moving-Average rule already leads to overweighting the most recent price changes. If it

is the most recent stock price changes (but not prices) that contain more relevant information

on the future direction of the stock price, then the use of the Price-Minus-Linear-Moving-
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Average rule leads to a severe overweighting the most recent price changes, which might be

suboptimal.

The other paradox is related to the effect produced by the use of a shorter moving average

in the computation of a trading signal for the Double Crossover Method. Specifically, our al-

ternative representation of the computation of technical trading indicators reveals an apparent

conflict of goals that some traders want to pursue. In particular, on the one hand, one wants

to put more weight on the most recent prices that are supposed to be more relevant. On the

other hand, one wants to smooth the noise by using a shorter moving average instead of the

last closing price (as in the Price-Minus-Moving-Average rule). It turns out that these two

goals cannot be attained simultaneously because the noise smoothing results in a substantial

reduction of weights assigned to the most recent price changes (and, therefore, most recent

prices). Figure 1 clearly demonstrates that the weighting scheme for the Double Crossover

Method has a hump-shaped form such that the largest weight is given to the monthly price

change at lag s. Then, as the lag number decreases to 0 or increases to k − 1, the weight of

the lag decreases. Consequently, the use of the Double Crossover Method can be justified only

when the price change at lag s contains the most relevant information on the future direction

of the stock price.

3.7 Alternative Construction of Trading Indicators

Let {pt} be the series of observations of the log-prices of a stock index. That is, pt = log(Pt)

where Pt is the month t closing price. The trading indicators based on moving averages can,

in principle, be constructed alternatively using the log-prices

Indicator
TR(k)
t = Eq(pt, pt−1, . . . , pt−k). (48)

In this case the straightforward application of our methodology (for examining how the value

of a trading indicator is computed) leads to the following general formula for the computation

of the value of trading indicator

Indicator
TR(k)
t ≡

∑k
i=1 xt−iqt−i∑k

i=1 xt−i

, (49)
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where qt−i = pt−i+1 − pt−i is the log-return on the index over (t − i, t − i + 1) and xt−i is

the weight of the log-return qt−i in the computation of moving average. In words, in this case

the value of any trading indicator based on moving averages of log-prices can alternatively be

computed using a weighting moving average of log-returns.

In fact, Hong and Satchell (2015) presented already in 2013 the result that can be considered

as a particular case of equation (49) when the trading rule is DCM(s, k) where in both shorter

and longer windows one uses the SMA weighting scheme. Later on Beekhuizen and Hallerbach

(2015) considered other types of trading rules and derived7 several particular cases of general

equation (49).

4 Best Performing Weighting Schemes in Out-of-Sample Tests

4.1 Data

The data for our empirical study in this section are similar to the data used in the study by

Zakamulin (2014). Specifically, we use data on two stock market indices, two bond market

indices, and the risk-free rate of return. The two stock market indices are the Standard and

Poor’s Composite stock price index and the Dow Jones Industrial Average index. The two

bond market indices are the Long-Term and Intermediate-Term US Government Bond indices.

Our sample period begins in January 1926 and ends in December 2012 (87 full years), giving

a total of 1044 monthly observations.

We use the monthly Standard and Poor’s Composite stock price index data and corre-

sponding dividend data provided by Amit Goyal.8 From 1926 to 1956, the index data come

from various reports of the Standard and Poor’s. From 1957 this index is identical to the

Standard and Poor’s 500 index. For more details about the construction of the index and its

dividend series see Welch and Goyal (2008). The DJIA index values for the total sample period

and dividends for the period 1988 to 2012 are provided by S&P Dow Jones Indices LLC, a

subsidiary of the McGraw-Hill Companies.9 The dividends for the period 1926 to 1987 are

obtained from Barron’s.10

7Their paper appeared several months after our paper was made available on the Internet.
8See http://www.hec.unil.ch/agoyal/.
9See http://www.djaverages.com.

10See http://online.barrons.com.
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The bond data are from the Ibbotson SBBI 2013 Classic Yearbook. We use both the capital

appreciation returns and total returns on the Long-Term and Intermediate-Term Government

Bonds. The risk-free rate of return is also provided by Amit Goyal. In particular, the risk-free

rate of return for our sample period is the Treasury bill rate.

4.2 Empirical Research Design

4.2.1 The Set of Weighting Schemes

The generation of different shapes of the moving average weighting function is based on the

following idea. Even though there are various combinations of trading rules based on moving

averages of prices coupled with various types of moving averages, all these combinations result

in basically only three types of the shape of the weighting function: equal weighting of price

changes (as in the MOM rule), underweighting the most old price changes (as in the P-MA

rule or in the most ∆MA rules), and underweighting both the most recent and the most old

price changes (as in the DCM). In order to generate these shapes, we employ three types of

weighting schemes based on exponential moving averages: (1) convex EMA weighting scheme

(CV-EMA) produced by ∆EMA(k) trading rule, (2) concave EMA weighting scheme (CC-

EMA) produced by P-REMA(k) trading rule, and (3) hump-shaped EMA weighting scheme

(HS-EMA) produced by DCM(s, k) trading rule where in both short and long windows we use

concave EMA weighting schemes. There is an uncertainly about the proper choice of the size

of the shorter window s in the DCM rule. Since the most popular combination in practice is

to use a 200-day long window and a 50-day short window, we set s = 1
4k for all values of k.

For some fixed number of price change lags k, the shape of each type of a moving average

weighting function depends on the value of the decay factor λ. In order to generate many

different shapes of the weighting function, in each trading rule we vary the value of λ ∈

{0.00, 1.00} with a step of ∆λ = 0.01. As a result, for each type of the EMA we get 100

different shapes. Since we have three different types of the EMA, the total number of generated

shapes amounts to 300. As a result, we obtain 300 different trading strategies; each strategy is

specified by a particular shape of the moving average weighting function. Figure 2 illustrates

the shapes of each type of weighting functions for two arbitrary values of λ. Both CV-EMA

and CC-EMA weighting schemes underweight the most old price changes. Yet, whereas in
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Figure 2: The types of the moving average weighting schemes used in our empirical study. Panel A

illustrates the convex exponential moving average weighting scheme produced by ∆EMA(k) trading

rule. Panel B illustrates the concave exponential moving average weighting scheme produced by P-

REMA(k) trading rule. Panel C illustrates the hump-shaped exponential moving average weighting

scheme produced by DCM(s, k) trading rule. λ denotes the decay factor. In all illustrations the

number of price changes k = 18. Lag denotes the weight of the lag ∆Pt−i, where Lag0 denotes the

most recent price change ∆Pt−1 and Lag17 denotes the most oldest price change ∆Pt−18.

the CV-EMA the weight of the price lag i is a convex exponential function with respect to

i (see equation (38)), in the CC-EMA the weight of the price lag i is a concave exponential

function with respect to i (see equation (33)). It is worth repeating (recall the discussion in

Section 3.6) that by varying the value of λ from 0 to 1, the weighting scheme of the CC-EMA

varies from the equal weighting scheme (when λ = 0) to the linear weighting scheme (when

λ = 1); the weighting scheme of the CV-EMA varies from the very extreme overweighting

(when λ = 0, only the most recent price change has a non-zero weight) to the linear weighting

scheme (when λ = 1). Last but not least, the HS-EMA with λ = 1 is equivalent to using

the linear weighting schemes in both the shorter and longer windows (in this case the trading

signal can be generated by SMA(s)-SMA(k)).
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4.2.2 Performance Measurement in Out-of-Sample Tests

We closely follow the methodology used in the study by Zakamulin (2014). Each shape of the

weighting function in our study is associated with a trading rule denoted by TR(k). Since our

goal is to estimate the real-life performance of trading rules, we need also to account for the

fact that the rebalancing an active portfolio incurs transaction costs. We suppose that buying

and selling stocks and bonds is costly, whereas buying and selling Treasury bills is costless.

Denoting by ν the one-way transaction costs, the return to the trading rule over month t is

given by

rt =



rPt if (δt = Buy) and (δt−1 = Buy),

rPt − ν if (δt = Buy) and (δt−1 = Sell),

rft if (δt = Sell) and (δt−1 = Sell),

rft − ν if (δt = Sell) and (δt−1 = Buy),

where rPt denotes the dividend-adjusted return to the passive counterpart of the active trading

rule (either stock or bond index return over month t). We assume that the one-way transaction

costs in the stock market amount to 0.25% (ν = 0.0025), whereas in the bond market the one-

way transaction costs amount to 0.10% (ν = 0.001).

The performance is measured by means of the Sharpe ratio. Specifically, the Sharpe ratio

of a trading rule with excess returns ret = rt− rft is computed as (according to Sharpe (1994))

SR(ret ) =
µ(ret )

σ(ret )
,

where µ(ret ) and σ(ret ) denote the mean and standard deviation of ret respectively.

It is crucial to observe that in order to compute the value of the technical indicator we need

to specify the size of the averaging window k. The out-of-sample performance measurement

method is based on simulating the real-life trading where a trader has to make a choice of what

size of the averaging window k to use given the information about the past performances of the

trading rule for different values of k. Specifically, the out-of-sample testing procedure begins

with splitting the full historical data sample [1, T ] into the initial in-sample subset [1, τ ] and

out-of-sample subset [τ+1, T ], where T is the last observation in the full sample and τ denotes

the splitting point. The initial in-sample period of [1, τ ] is used to complete the procedure
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of selecting the value of k which produces the best performance. That is, the choice of the

optimal k∗τ is given by

k∗τ = arg max
k∈[kmin,kmax]

SR(re1, r
e
2, . . . , r

e
τ ),

where kmin and kmax are the minimum and maximum values for k, and SR(re1, r
e
2, . . . , r

e
τ )

denotes the trading rule’s Sharpe ratio computed using the excess returns from month 1 to

month τ . Subsequently, the trading signal for month τ + 1 is determined using the TR(k∗τ )

rule. We then expand the in-sample period by one month, perform the selection of the value

of k which produces the best performance once again using the new in-sample period of [1, τ +

1], and determines the trading signal for month τ + 2 using the TR(k∗τ+1) rule. We repeat

this procedure, pushing the endpoint of the in-sample period ahead by one month with each

iteration of this process, until the trading signal for the last month T is determined.

The out-of-sample performance of a trading strategy is measured by computing trading

rule’s Sharpe ratio using the excess returns over the out-of-sample period, (reτ+1, r
e
τ+2, . . . , r

e
T ).

To facilitate the performance comparison, we compute the Sharpe ratio of the passive coun-

terpart of the active trading rule using the excess returns over the same out-of-sample period

(reP,τ+1, r
e
P,τ+2, . . . , r

e
P,T ) and report the difference between the Sharpe ratio of the trading rule

and the Sharpe ratio of the passive strategy

∆SR = SRTR − SRP ,

where SRTR and SRP denote the Sharpe ratios of the trading rule and its passive benchmark

respectively. Because the estimate for a Sharpe ratio is subject to estimation errors, we have

scientific evidence that a trading rule outperforms its passive counterpart only when we can

reject the following null hypothesis

H0 : ∆SR ≤ 0.

This hypothesis is tested using Jobson and Korkie (1981) test with the Memmel (2003) cor-

rection. Specifically, given SRTR, SRP , and ρ as two estimated Sharpe ratios and correlation

coefficient between the excess returns of the active and passive strategies over a sample of size
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T , the test of the null hypothesis is obtained via the test statistic

z =
SRTR − SRP√

1
T

[
2(1− ρ2) + 1

2(SR
2
TR + SR2

P − 2ρ2SRTRSRP )
] ,

which is asymptotically distributed as a standard normal.

4.3 Empirical Results

For each stock and bond market index, we perform out-of-sample simulation of the returns to

300 different trading rules (where each one is associated with a specific shape of the weighting

function) over the period January 1930 to December 2012. Since the most typical recommen-

dation for the size of the averaging window varies from 10 to 12 months, to be on the safe side

we set kmin = 4 and kmax = 18. For each index, Table 1 reports the top 10 best performing

weighting schemes together with their decay factors and the mean sizes of the averaging win-

dow11 k + 1, the difference between the Sharpe ratio of the trading rule and the Sharpe ratio

of its passive counterpart ∆SR, and the p-value of testing the null hypothesis H0 : ∆SR ≤ 0.

For the Standard and Poor’s Composite index, 7 out of 10 best performing weighting

schemes belong to the HS-EMA type where the decay factor varies in the range from 0.95

to 1.00. It is worth noting that in the best performing weighting scheme the decay factor

equals to 1.00 which means that the best performing trading rule can be implemented as the

difference between SMA(s) and SMA(k). Interestingly, since the mean value of k + 1 equals

to 9 and, therefore, the mean value of s+1 equals to 3, the best performing weighting scheme

closely corresponds to the very popular among practitioners DCM rule where one uses 50-day

and 200-day simple moving averages. The CC-EMA weighting scheme with λ = 0.82 and the

CV-EMA weighting scheme with λ ∈ {0.94, 0.95} are also among the top 10 best performing

weighting schemes. The major types among the top 10 best performing weighting schemes for

the Standard and Poor’s Composite index are illustrated in Figure 3, Panel A. Whereas the

Sharpe ratio of the passive strategy amounts to 0.38, the Sharpe ratio of a weighting scheme,

that belongs to the top 10 best ones, exceeds the Sharpe ratio of the passive strategy by 0.12-

0.15. For 9 out of 10 best performing weighting schemes we can reject the null hypothesis at

11Note that in our exposition the value of k denotes the number of the lagged price changes. Therefore the
value of k + 1 equals the number of prices used to compute the value of the trading indicator.
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the 10% level in favor of the alternative hypothesis that the Sharpe ratio of the trading rule is

greater than the Sharpe ratio of the passive strategy.

For the Dow Jones Industrial Average index, among the top 10 best performing schemes 3

belong to the HS-EMA type, 4 to the CC-EMA type, and 3 to the CV-EMA type. As for the

Standard and Poor’s Composite index, the best performing weighting scheme also belongs to

the HS-EMA type. In contrast to the parameters of the best performing HS-EMA scheme for

the Standard and Poor’s Composite index, in this case the HS-EMA scheme uses a substantially

longer length of the averaging window (15 versus 9) and a notable lower decay factor (0.82

versus 1.00). The major types among the top 10 best performing weighting schemes for the

Dow Jones Industrial Average index are illustrated in Figure 3, Panel B. Interestingly, 3 out

of 4 CC-EMA weighting schemes (that are among the top 10 best ones) have a decay factor in

the range 0.21-0.23. As a result, the weighting in these schemes is close to the equal weighting

of price changes as in the MOM rule. The Sharpe ratio of the passive strategy also amounts

to 0.38, while the Sharpe ratio of a weighting scheme, that belongs to the top 10 best ones,

exceeds the Sharpe ratio of the passive strategy by 0.05-0.06. However, none of the top 10

best performing weighting schemes produces the performance which is statistically significantly

better than that of the passive strategy (at conventional statistical levels).

For the bond market indices, the best performing weighting schemes belong almost exclu-

sively to the CV-EMA type. Notably, the best performing weighting scheme for timing the

Long-Term Government Bond index has a decay factor of 1.00 which means that the best

performing trading rule in out-of-sample tests can be implemented as P-SMA(k) rule. An-

other observation that is worth mentioning is that market timing does not work at all on

the Long-Term Government Bond index. Even the best performing rule in this case has the

same Sharpe ratio as that of the passive strategy (which amounts to 0.29). In contrast, for the

Intermediate-Term Government Bond index the Sharpe ratios of the best performing weighting

schemes exceed the Sharpe ratio of the passive strategy (that is equal to 0.43) by 0.07-0.09.

Yet, none of the weighting schemes produces the performance which is statistically significantly

better than that of the passive strategy. Interestingly, for this bond index the mean size of

the averaging window is much smaller than that for any other index in our empirical study.

Another interesting observation is that the 5th best performing weighting scheme is of the

HS-EMA type with a decay factor of 1.00. The major types among the top 10 best perform-
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Weighting Average size Decay Difference
Rank

Scheme k + 1 λ ∆SR
P-value

Panel A: Standard and Poor’s Composite
1 HS-EMA 9.07 1.00 0.15 0.06
2 HS-EMA 8.88 0.99 0.15 0.07
3 HS-EMA 9.37 0.95 0.14 0.07
4 HS-EMA 9.26 0.96 0.14 0.08
5 CC-EMA 9.86 0.82 0.13 0.08
6 HS-EMA 8.42 0.97 0.13 0.09
7 CV-EMA 9.89 0.95 0.13 0.09
8 HS-EMA 8.31 0.94 0.13 0.10
9 CV-EMA 9.38 0.94 0.12 0.10
10 HS-EMA 8.50 0.98 0.12 0.11

Panel B: Dow Jones Industrial Average
1 HS-EMA 15.05 0.82 0.06 0.27
2 CV-EMA 10.00 0.76 0.06 0.27
3 CV-EMA 10.41 0.89 0.06 0.25
4 HS-EMA 13.90 0.87 0.06 0.27
5 CC-EMA 11.85 0.23 0.06 0.28
6 CC-EMA 11.85 0.22 0.06 0.28
7 CC-EMA 11.85 0.21 0.06 0.28
8 CV-EMA 10.00 0.77 0.06 0.28
9 CC-EMA 12.15 0.98 0.05 0.28
10 HS-EMA 14.18 0.85 0.05 0.28

Panel C: Long-Term Government Bonds
1 CV-EMA 11.86 1.00 0.00 0.50
2 CV-EMA 10.06 0.68 -0.00 0.52
3 CV-EMA 9.86 0.63 -0.01 0.54
4 CC-EMA 10.81 0.32 -0.01 0.54
5 CC-EMA 10.81 0.31 -0.01 0.54
6 CV-EMA 8.84 0.62 -0.01 0.55
7 CV-EMA 8.59 0.71 -0.01 0.56
8 CV-EMA 8.55 0.65 -0.01 0.57
9 CC-EMA 9.00 0.96 -0.02 0.58
10 CV-EMA 9.27 0.69 -0.02 0.59

Panel D: Intermediate-Term Government Bonds
1 CV-EMA 4.38 0.68 0.09 0.14
2 CV-EMA 4.27 0.71 0.09 0.16
3 CV-EMA 4.49 0.73 0.09 0.16
4 CV-EMA 4.71 0.72 0.09 0.16
5 HS-EMA 5.31 1.00 0.08 0.17
6 CV-EMA 5.09 0.84 0.08 0.19
7 CV-EMA 4.00 0.54 0.07 0.21
8 CV-EMA 5.87 0.83 0.07 0.20
9 CV-EMA 5.01 0.66 0.07 0.21
10 CV-EMA 8.59 0.62 0.07 0.21

Table 1: For each index, this table reports the top 10 best performing weighting schemes (out of

total 300 tested) in our out-of-sample tests. Rank denotes the rank of a weighting scheme; the best

performing scheme is assigned the 1st rank. Average size k+1 denotes the mean value of k+1 over the

out-of-sample period. Weighting scheme denotes the type of the weighting scheme. Decay λ reports

the value of the decay factor in the weighting scheme. Difference ∆SR denotes the difference between

the Sharpe ratio of the trading rule (associated with the weighting scheme) and the Sharpe ratio of its

passive counterpart. P-value denotes the p-value of testing the null hypothesis H0 : ∆SR ≤ 0.

ing weighting schemes for the Long-Term Government Bond index and the Intermediate-Term

Government Bond index are illustrated in Figure 3, Panels C and D respectively.
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Figure 3: For each index, this figure provides illustrations of 3 major types of weighting schemes that

belong to the top 10 best performing schemes in out-of-sample tests. Lag denotes the weight of the lag

∆Pt−i, where Lag0 denotes the most recent price change.

4.4 Discussion

Because of the marginal differences in the performances of the top 10 best weighting schemes

in out-of-sample tests, and because of the fact that virtually for every financial index in our

study each major type of the weighting scheme happens to be among the top 10, it is extremely

difficult to draw general conclusions about what type of the weighting scheme produces the best

performance. For practitioners, it is comforting to know that the popular DCM rule, where one

uses 50-day and 200-day simple moving averages, is very close to the best performing rule for

timing the Standard and Poor’s 500 index. Zakamulin (2015) entertains a method of finding

the most robust moving average weighting scheme, where “robustness” of a weighting scheme

is defined as its ability to generate sustainable performance under all possible market scenarios

regardless of the size of the averaging window. He finds that the CV-EMA weighting scheme

with a decay factor of 0.85-0.90 produces the most robust performance. The same type of the

weighting scheme with decay factors that are close to the range of 0.85-0.90 can also be found
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among the top 10 best for all financial indices in our study except the Long-Term Government

Bond index.

Excluding the Intermediate-Term Government Bond index, the mean size of the averaging

window, k+1, is close to the most often used size of 10 months (200 days). Practitioners also

find this information comforting to know. Yet, practitioners should be aware of the fact that

there is no single size of the averaging window that works best for any financial index at any

given time. We have evidence that the optimal size of the averaging window is time-varying.

Last but not least, the results of our empirical study agree with the conclusions reached in

the study by Zakamulin (2014). Specifically, only for the Standard and Poor’s Composite index

we find weak evidence12 that the best performing weighting schemes are able to outperform

the passive strategy. Additionally, for 2 out of 4 financial indices the top 10 best weighting

schemes outperform the passive benchmark in terms of the value of their Sharpe ratio. Yet,

there is no statistical evidence of outperformance. For the Long-Term Government Bond index

we find that the best performing weighting schemes are not able to beat the passive benchmark

even in terms of the value of the Sharpe ratio.

5 Conclusions

In this paper we present the methodology to study the computation of trading indicators in

many market timing rules based on moving averages of prices and analyze the commonalities

and differences between the rules. Our analysis reveals that the computation of every technical

trading indicator considered in this paper can equivalently be interpreted as the computation

of the weighted average of price changes over the averaging window. Despite a great variety of

trading indicators that are computed seemingly differently at the first sight, we find that the

only real difference between the diverse trading indicators lies in the shape of the weighting

function used to compute the moving average of price changes. The most popular trading

indicators employ either equal-weighting of price changes, overweighting the most recent price

changes, or a hump-shaped weighting function with underweighting both the most recent and

most distant price changes. The trading indicators basically vary only by the degree of over-

and under-weighting the most recent price changes.

12The evidence is “weak” because we can reject the null hypothesis only at the 10% level. Note also that we
perform a one-tailed test which produces lower p-values as compared to a two-tailed test.
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As a straightforward practical application of our analysis, in this paper we perform a

comprehensive out-of-sample test of 300 different shapes of the moving average weighting

function using historical data on four financial market indices. These 300 shapes are chosen to

represent different variations of a few most typical shapes of the weighting functions used in

market timing with moving averages. The results of our tests suggest answers to long-standing

questions about optimal types of moving averages and whether the best performing weighting

scheme can beat the passive counterpart in out-of-sample tests.

Unfortunately, we find no clear-cut answer to the first question. Yet, practitioners find it

comforting to know that the popular double-crossover method, where one uses 50-day and 200-

day simple moving averages, is very close to the best performing rule for timing the Standard

and Poor’s 500 index. Another well performing weighting scheme in out-of-sample tests is

the convex exponential moving average of price changes with a decay factor that lies in the

range 0.85-0.95 (for monthly data). Practitioners also find it comforting to know that for the

majority of indices in our study the mean size of the averaging window is close to the most

often used size of 10 months (200 days).

Regarding the answer to the second question, only for one index we find weak evidence that

the best performing weighting schemes outperform the passive strategy in out-of-sample tests.

For all other financial indices in our study there is no statistically significant evidence of market

timing outperformance even for the best performing weighting schemes. Therefore the results of

our empirical study are in sharp contrast with the findings reported in the majority of previous

studies where the authors document that “market timing works”. Our findings reaffirm the

following conclusion reached in the two previous studies where the researchers implement out-

of-sample tests of profitability of some trading rules in the stock market (Sullivan et al. (1999)

and Zakamulin (2014)): the profitability of market timing is highly overstated, to say the least.
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